Optoacoustic imaging of HIFU-induced thermal lesions in tissue
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Motivation: High-intensity focused ultrasound (HIFU) provides
noninvasive and nonionizing treatment of tumors. HIFU relies on
absorption of ultrasonic energy at the focus to induce temperature
elevation, which can lead to thermal necrosis when the temperature
exceeds 56°C for a duration of 2 s [1]. High precision, noninvasive
implementation and the ability to treat deeply seated diseased sites make
HIFU a particularly attractive hyperthermia modality. Economical methods
for reliably and noninvasively guiding and monitoring HIFU therapy are
essential to develop HIFU into a clinically viable modality.

Experimental concept: The present study investigates the feasibility of
exploiting the optoacoustic (OA) effect for noninvasively detecting thermal
damage induced by HIFU. The OA effect relies on local absorption of a
brief monochromatic light pulse; optical absorption induces rapid
thermoelastic expansion resuiting in the generation of broadband
uitrasonic waves [2]. The: OA pressure at the absorption site is estimated
from the following expres sion:

P : local OA pressure
= c: sound speed
m [ P : coefficient of thermal expansion
P= icn uF Cp : specific heat
P Mg : local absorption coefficient
F: incident laser fluence

The optical absorption coefficient of the tissue that undergoes thermal
necrosis changes irreversibly [3,4,5] and can be distinguished from the
surrounding tissue using optoacoustic imaging (OAl). This study used
OA-based 3-D tomography system to image lesions created in excised
chicken liver and live nude mice. Specimens were subjected to HIFU
exposures and 3-D OA scans were acquired before and after the HIFU
exposure. The system was capable of generating 3-D images with a cubic
voxel size of 0.5 mm. The key components of the experimental setup are
shown in Fig. 2.
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3-D OA tomography: Custom 3-D image reconstruction algorithm was
implemented after post-processing the OA data
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Results: Figure 3 shows the 3-D OA images of an excised chicken liver
before and after HIFU exposures. The exterior surface of the tissue
specimen was imaged using 755 nm light. The HIFU-induced lesion was
visible in the 1064 nm OAIl. Thermal damage resulted in an enahanced
optical absorption (positive contrast) at 1064 nm which is consistent with
prior works.
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Flgure 4 shows in vivo OA images of nude mice acquired before and
after HIFU exposures. The precise location of the HIFU transducer's
focus was not known a priori but the post-HIFU dissection revealed
that the thermal dose was delivered to the left kidney resulting in a soft
lesion (diameter 2 mmy). The diameter of the lesion estimated from OA
slices along the HIFU focus was between 1.5 and 2 mm. The OA
image provided indication to the location and the extent of the lesion.
The lesion resulted in a reduction in optical absorption (negative
contrast) compared to the OA signal from the surrounding tissue,
which was inconsistent with results obtained from ex vivo experiments.
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Discussion: OAIl was performed at both 755 nm and 1064 nm but the
HIFU-induced lesions were visible only in the 1064 nm OAI. The 1064
nm wavelength is sensitive to water and hemoglobin. Localized
changes in these chromophores likely contribute to a change in the OA
signal from the thermally damaged tissue, which is apparent in two
possible ways: a positive contrast or a negative contrast.
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Increase in optical scattering at the lesion

Conclusions: The feasibility of imaging HIFU-induced lesions using
OAl was demonstrated both ex vivo and in vivo. OAl can noninvasively
and reliably guide and monitor thermal ablation therapies.
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